[딥러닝 기초] 딥러닝 수학 - 2 : 행렬, 미분
안녕하세요 :) 오늘은 저번 게시물(딥러닝 수학-1)에 이어서 조금 더 구체적인 수학적인 내용을 다뤄보겠습니다. 크게 형렬, 미분에 대해서 배워보겠습니다. 1. 행렬 (matrix) 행렬은 수와 식을 사각 형태의 배열로 나열한 것을 의미합니다. 거로 줄을 행, 세로 줄을 열이라고 부릅니다. 이때, 행의 수와 열의 수가 같은 경우 정사각 행렬(square matrix)라고 부릅니다. 또한, 행렬 중, 하나의 열로 구성된 행렬을 열 벡터, 하나의 행으로 구성된 행렬을 행 벡터라고 부릅니다. 행렬의 원소 중, i행 j열에 위치한 성분은 aij로 표시합니다. 그중, i = j 인 경우 aij 가 1이고, 나머지의 경우 모두 0인 경우를 단위행렬(E)라고 합니다. 행렬의 연산 행렬의 상등 두 행렬에서 대응하는 각..
2020. 7. 6.
[딥러닝 기초] 딥러닝 수학 - 1 : 함수, 수열, 벡터
안녕하세요 :) 오늘은 구체적인 딥러닝 이야기를 하기에 앞서, 딥러닝을 이해하는데 필요한 수학적인 내용을 다뤄볼까 합니다. 크게 함수, 수열, 벡터에 대한 내용을 다뤄보겠습니다. 1. 함수 1차 함수 가장 기본적인 1차 함수에 대해서 알아보겠습니다. 일차 함수는 기본적으로 다음과 같은 형식으로 구성될 수 있습니다. 위 식은 독립 변수가 1개인 가장 단순한 형태의 1차 함수입니다. 다음과 같이 2개의 독립 변수로 구성된 1차 함수를 생성할 수도 있습니다. 이 때, y는 x1, x2와 "1차 함수 관계"라고 표현합니다. ※ 독립 변수와 종속 변수 x가 주어졌을 때, y의 값이 정해진다면, x는 독립변수, y는 종속 변수라고 할 수 있습니다. 앞서 배운 신경망의 가중입력은 1차 함수 관계로 표현할 수 있습니다..
2020. 7. 1.